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ABSTRACT

In a data hungry world, approximate computing has emerged as
one of the solutions to create higher energy efficiency and faster
systems, while providing application tailored quality. In this paper,
we propose ApproxLP, an Approximate Multiplier based on Linear
Planes. We introduce an iterative method for approximating the
product of two operands using fitted linear functions with two in-
puts, referred to as linear planes. The linearization of multiplication
allows multiplication operations to be completely replaced with
weighted addition. The proposed technique is used to find the sig-
nificand of the product of two floating point numbers, decreasing
the high energy cost of floating point arithmetic. Our method fully
exploits the trade-off between accuracy and energy consumption
by offering various degrees of approximation at different energy
costs. As the level of approximation increases, the approximated
product asymptotically approaches the exact product in an iterative
manner. The performance of ApproxLP is evaluated over a range of
multimedia and machine learning applications. A GPU enhanced
by ApproxLP yields significant energy-delay product (EDP) im-
provement. For multimedia, neural network, and hyperdimensional
computing applications, ApproxLP offers on average 2.4X, 2.7X,
and 4.3x EDP improvement respectively with sufficient computa-
tional quality for the application. ApproxLP also provides up to
4.5x EDP improvement and has 2.3x lower chip area than other
state-of-the-art approximate multipliers.
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1 INTRODUCTION

Energy conservation and efficiency maximization is a universal
goal for all electronic devices, from high voltage power engines
to small portable chip devices. However, power usage is limited
by availability and cost, regardless of the source. Designers are
always on the lookout for potential trade-offs where performance
can be acceptably exchanged for power efficiency. Approximate
computing is a promising approach which enables such a trade-
off between computational accuracy and efficiency. It occupies an
important niche in human sensory applications and statistical ap-
plications [1, 2]. Human senses naturally have limited sensitivity
and may not be able to distinguish between the output of a math-
ematically accurate computation and an approximate one [3-6].
Machine learning applications are also error tolerant because of
their statistical nature. If error introduced due to approximation
is on the same order of magnitude as the application’s statistical
variance, approximate computing would not affect the quality of
the output [7-10].

Application-specific devices are often optimized to meet but not
exceed minimum performance and accuracy requirements [11-14].
However, GPUs, a popular and widespread choice for a large variety
of applications, often exceed the minimum performance metrics of
the application. In such cases, energy and time are wasted to com-
pute highly accurate results for applications where the additional
accuracy provides no benefits. Hence, there is a need to develop
systems which conserve energy by providing sufficient, rather than
excessively accurate computational results. Numerous data pro-
cessing applications use a large range of values and require high
precision. Therefore, computations in many traditional and state-of-
the-art computing systems use floating point units (FPUs) [15-17].
Multiplication is one of the most common and costly FPU opera-
tions, slowing down the computation in many applications such as
signal processing, neural networks, and stream processing. For ex-
ample, our evaluation on general OpenCL applications from AMD
APP SDK v2.5 [18] indicates that over 85% of floating point arith-
metic involved multiplication. Thus, we devote special attention
to reducing the cost of floating point multiplication operations
through approximation.

Prior work tried to improve the efficiency of multiplication by
enabling approximation [13, 19-22]. However, designs with fixed
approximation accuracy lack the flexibility to accommodate a wide
variety of applications [11]. Other designs provide flexibility and
tunable error, but lose efficiency by utilizing a hybrid approach,
where accuracy is adjusted by performing exact computations when
approximation fails to yield enough accuracy, rather than tuning
the approximation itself [22-24]. These designs provide variable
accuracy, but their efficiency plummets as accuracy requirements
increase, negatively impacting cost and computational time.

In this paper, we propose ApproxLP, an approximate multiplier
based on the linearization of nonlinear planes, which dramatically



decreases the energy cost of floating point multiplication by per-
mitting a controlled amount of error. Proposed ApproxLP is a GPU
enhancement which computes the approximate product of floating
point inputs with a tunable degree of accuracy. It is an iterative
method, wherein every iteration of the algorithm asymptotically
approaches the exact product. ApproxLP carries significant advan-
tages over both emerging and conventional approximation methods,
providing greater accuracy at lower energy cost and latency. Ap-
proxLP is a versatile algorithm with the ability to generate both
rough and very exact approximations. Our method combats the
greatest weakness of state-of-the-art hybrid methods, which is the
necessity to resort to exact matrix multiplication when approxima-
tion fails to yield enough accuracy. ApproxLP provides a solution
for approximating products with very low error tolerances, in the
range of 1% and lower, without resorting to exact multiplication,
as is the case with hybrid methods. We evaluate the efficiency and
accuracy of proposed ApproxLP on a wide range of multimedia
and machine learning applications. Our evaluation shows that a
GPU enhanced by ApproxLP can provide on average 2.4X, 2.7X,
and 4.3X energy-delay product (EDP) improvement on multimedia,
deep neural network, and hyperdimensional computing applica-
tions respectively, as compared to baseline GPU. Compared to the
state-of-the-art approximate multiplier [23], ApproxLP can provide
up to 4.5X EDP improvement and has 2.3X lower chip area while
providing comparable quality of computation.

2 RELATED WORK

Computational power reduction in GPU’s can be accomplished
either by limiting the performance of the system, or redesigning
hardware blocks for low power operation [11, 14, 25, 26]. Dynamic
voltage scaling is a common technique that relies on the reduction
of power supply voltage to cut down power consumption. How-
ever, under powering the circuitry slows down the whole system
and increases timing errors, limiting the extent to which voltage
scaling can be practically applied. [25-27]. Another research area is
focused on enabling approximation by performing computational
reuse [28-30]. A lookup table located next to each GPU cores to
exactly/approximately eliminates redundant computation. A vari-
ety of designs have also focused on redesigned hardware blocks to
conserve energy at the expense of accuracy, which can be used both
independently and in conjunction with voltage scaling. Work such
as [11, 13, 14, 31, 32] are designs which lower the number of out-
puts of multiplication building blocks, decreasing energy and area.
Work in [11] utilizes truncated multiplication by selecting a fixed
number of most significant bits as inputs. Accuracy is conserved by
neglecting leading zeros in the operands. However, these methods
of approximation are application specific and non-configurable, as
the level of accuracy cannot be changed during runtime.

Works in CFPU [22] and RMAC [23] use a hybrid method for
runtime configurable approximation. At worst, the error yielded
by CFPU is 50%. Energy efficiency drops rapidly for higher desired
accuracy. RMAC [23] provides a very fast and energy efficient
way of approximating multiplication with an error of up to 11.1%,
but loses efficiency once a lower maximum error is desired due
to the necessity of resorting to exact multiplication to increase
accuracy. Ultimately, despite both being runtime configurable with
low energy consumption, both designs are still unable to completely
remove the need for exact multiplication from their designs. Unlike
RMAC and CFPU, our proposed design, ApproxLP, provides tunable
accuracy without ever resorting to exact multiplication - the costly
operation which is desirable to avoid.
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Figure 1: (a) The exact product of the mantissa operands; (b)
the product of the mantissa operands linearized with one
plane.

3 APPROXLP DESIGN

3.1 Standard IEEE Format

The IEEE floating point standard 754 [33] represents non-integer
numbers as the product of a sign bit, two to the power of an expo-
nent, and the significand. The significand is a value between one
and two, but only the fractional portion of the significand is stored
explicitly. The bits storing the fractional portion are called the man-
tissa. Floating point multiplication is accomplished by XORing the
sign bits, adding the exponent bits, and multiplying the signifi-
cands. This section explains our algorithm for approximating the
product of the significands, which henceforth will be referred to as
operands.

3.2 ApproxLP Mathematical Support

The product of two numbers, X and Y, is a nonlinear plane in three-
dimensional Cartesian coordinates, where the product lies along
the z axis. However, any nonlinear plane can be approximated by a
linear plane of the form:

AX = Xo) +B(Y = Yo) + C(Z - Zg) = 0 1)
Rearranged and simplified, equation 1 becomes:
Z=AXX+BxY+C (2)

Linear planes are an attractive method for approximating a non-
linear function of two variables. By its very definition, a linear plane
is the sum of two scaled inputs, meaning the multiplication of the
two input mantissas can be eliminated and replaced with addition.
We will be using linear planes to approximate the product of the
significands of two floating point inputs, which henceworth will
be denoted as X and Y.

Figure 1 shows a comparison between the nonlinear plane rep-
resenting the product of the two operands, and a corresponding
linear approximation. Both planes have the same output range and
similar slope, but there are two evident limitations:

e Error: Error is defined as the difference between the exact plane
and its approximation, normalized by the exact plane. A single
linear plane provides a highly inaccurate approximation for X XY,
as seen in Figure 1, so a more accurate solution must be found.

e Efficiency: In order for the linear approximation method to be
effective, the input variables may only be scaled by powers of
two, since scaling by powers of two in binary arithmetic involves
a simple left or right bitwise shift. Scaling by any other number
reinstates the need for multiplication, meaning that the function
in Figure 1b is unsatisfactory.
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Figure 2: Overview of ApproxLP approximation and the dis-
tribution of error in different configurations. (a, c, e) show
the multiplication plane subdivided at different levels; (b, d,
f) show the error distribution map at different levels.

In the next section, we describe our proposed method for over-
coming the challenges listed above and approximating the nonlin-
ear product of operands using linearization. The key to accurately
approximating a nonlinear plane with linear ones is to correctly
subdivide the nonlinear plane and model each individual section
with its own unique linear function, while only using permissible
coefficients, powers of two. We have derived a methodology for
finding the correct subdivision patterns for continuously decreas-
ing approximation error, while operating within the confines of
limited coefficients. ApproxLP provides tailored linear functions
which are individually optimized for different input combinations
to provide the most accuracy with the least number of operations.
This customization is what sets ApproxLP apart from emerging
and conventional methods which treat all inputs equally, such as
truncated matrix multiplication.

3.3 ApproxLP & Error Configuration

An efficient subdivision pattern is crucial for modeling the nonlin-
ear multiplication plane. We derive the optimal subdivision pattern
by examining error maps. The difference between the exact plane
and an approximate plane results in another Cartesian plane, which
provides insight into the magnitude and location of error. By observ-
ing these error maps, we can define the optimal way to subdivide
the exact plane and fit each section with a suitable linear function.
This process is illustrated in Figure 2.

Figure 2a depicts the initial subdivision. Observation of Figure
1 shows that there is a line of symmetry running down the exact
multiplication plane, from the top corner to the bottom corner. After
the plane is divided in half in such a manner, the right and left halves
are fitted with linear functions, within the constraints described
earlier. The resulting error map is shown in Figure 2b. It has a
clearly defined inverted pyramidal-like shape, with four distinct
“faces’. This observation indicates to us that the next subdivision
should mimic this pattern.

Table 1: ApproxLP configuration and maximum error rate
at different levels of approximation.

Approximation Division Lines Sections Maximum Error

Level 1 1 2 12.5%
Level 2 2 4 4.167%
Level 3 6 12 1.25%
Level 4 14 40 0.347%
Level 1 Level 2 Level 3
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Figure 3: Histograms of ApproxLP error distribution at dif-
ferent levels of approximation.

Figures 2c-f show the continuation of this process. The points
of maximum error nonlinearity indicate the optimal placement of
new subdivision lines, which are shown in red on the rightmost
figures. With every iteration of this method, the points of maximum
error are set to zero, and new peaks and troughs are formed, with
diminishing amplitude — in other words, the error of approximation
decreases. Henceforth, the extent to which the plane is subdivided
will be referred to as "level of approximation". The first level, called
Level 1, corresponds to one division line, as seen in Figure 2a. Each
successive subdivision corresponds to the next level. For an index
n =1,2,3,... where nis the level of approximation, the total number
of subregions, denoted as N is determined by the equation:

2, n=1
N:{ on-1 +22n—3’ n>2 3)

For n = 1,2,3,... where n is the level of approximation, the
maximum error is equal to:

-2n

error(%) = W * 100 (4)

Table 1 lists the summary of the results for four levels of ap-
proximation. Figure 3 shows the histograms of the ApproxLP error
distribution running one million randomly generated floating point
numbers. At Level 1, ApproxLP provides a maximum error of 12.5%.
At Levels 2 and 3, the error distribution narrows and centers around
zero. At Level 4, the magnitude of error is less than or equal to
0.347%.The maximum multiplication error significantly decreases
with every successive level.

4 IMPLEMENTATION & INTEGRATION

4.1 ApproxLP Hardware Implementation

Our multiplication algorithm uses conventional techniques to find
the sign bit and exponent bits of the product, but uses an approx-
imation technique to find the significand. The previous section
discussed the mathematical theory of approximating the signif-
icand using linear tangential planes. This section describes the
practical implementation of the mathematical model. The subdivi-
sions described in Section 3 become conditional statements, and the
levels of approximation correspond to layers of nested conditional



Inputs:
xandy
ifxzy T else
= |
T
2 Z=2x +y+ 1 )
ifxsyz1 else

= fx+yz 15 ifx-y 205 ify-x205 ify-x=05

§ Z2=2+0.25x-0.25 Z=Z+0.25 Z=2-0.25y+0.25 Z2=7+0.25x

3 | elselfnyz05 | elseifxiy<05 else if x+y 2 1.5 else ifxey <05
2=2-0.25% +0.25 2=2-025y 2=2+025y-0.25 7=2-0.25x

else else else else
Z2=2-025y+0125 L2=2+025x-0.125 “Z=2-0.25x+0.125 -Z=2 +0.25y - 0.125

Figure 4: Tree-based diagram of ApproxLP approximation
up to Level 3.

Sign Exponent Mantissa
X [Kaz| XapeorooronnXaa | Xo3 X2 Xat o X |+ 026 Xaa Xza Xan ..o Xa| - X
x J + + 2
LSRR T — Y1 0,
Y |v,2| vn._.____.____.v,,,|v23v22v21 ________ ¥y y
+ +
154023022 071 .o ol 1

yd |Z:2| v R— ] l Z:3Z22Z21 werenns

Z ].-— Normalize

Figure 5: Hardware implementation of ApproxLP in Level 1.

logic. Each successive level builds upon the previous, meaning
no computations are wasted, and no unnecessary operations are
performed.

Section 3 describes linear equations used to approximate the
product of X and Y. However, X and Y are the full significands of
the floating point inputs. Conventionally, X and Y are not explicitly
stored. Rather, only the fractional portions of the significands are
available. The transition from complete significands to mantissas is
performed by applying a simple substitution:

X=1+x Y=1+y (5)

Where x and y are the fractional portions of the significands,
aka, mantissas. With this substitution applied, a finalized linear
model for multiplication approximation can be derived. The equa-
tions governing our approximation method are pictured in Figure
4. Figure 4 shows a tree diagram for Levels 1 through 3, complete
with conditional statements and equations. The approximate prod-
uct of the inputs for any given level of approximation is found by
evaluating conditional statements and following the corresponding
branch. As discussed earlier, inputs are only scaled by powers of
two.

Figure 5 shows the implementation example of Level 1 approxi-
mation. Conventionally, the sign bits are XORed and the exponents
are added. Our tailored linear function is then evaluated. The final
step of the process is normalization, which also occurs in conven-
tional floating point multiplication. If the evaluated mantissa from
the previous step is greater than two, it is shifted so that it lies
between one and two, and the exponent is adjusted accordingly.

4.2 GPU Integration

The proposed ApproxLP was integrated into the AMD GPU archi-
tecture, Radeon HD 7970 device. We have implemented ApproxLP
on Multi2sim, a cycle accurate CPU-GPU simulator [34]. The GPU
consists of 32 computational units, where each consists of a set
of four SIMD execution units and a scheduler. The SIMD has 16

Table 2: Datasets (n: feature size, K: number of classes)

Data DNN HD
n K  Size Accuracy Accuracy Description
ISOLET | 617 26 19MB 96.3% 96.1% Speech Recognition [37]
UCIHAR | 561 12 10MB 97.3% 98.1% Activity Recognition[38]
PAMAP | 75 5 240MB 95.8% 92.9% Physical Monitoring[39]
FACE 608 2 1.3GB 96.1% 96.5% Face Recognition[19]

execution cores, resulting in a total of 64 cores for each computing
unit. We integrated ApproxLP on GPU architecture by replacing
the existing floating point units in the Multiplier (MUL) and the
multiply-accumulator (MAC) with our design. Since most learning
algorithms use a MAC unit, we exploit ApproxLP to provide an
approximate MAC unit. The MAC unit performs all multiplication
operations approximately using ApproxLP. Additionally, when the
accumulation of the multiplier exponents is much greater than
the adder operand (Zexp — (Xexp + Yexp) > 4), the MAC unit ig-
nores the addition and outputs the result of ApproxLP, since the
multiplication term dominates the output.

5 EVALUATION

5.1 Experimental Setup

We developed both software and hardware implementation of Ap-
proxLP for use in software simulation and architectural evaluation.
The software approach is implemented using C++ and Python, and
can be integrated with any application using multiplication. We
calculated the energy consumption of existing FPU’s using the
FloPoCo [35] library and synthesized them using Synopsys Design
Compiler in 45-nm ASIC flow. We also used Synopsys Prime Time to
optimize the FPU’s power consumption. The energy consumption
and execution time of the proposed ApproxLP are estimated using
a circuit level simulator, HSPICE, in 45-nm technology.

5.2 Workloads

We tested the efficiency of the proposed ApproxLP using both
circuit-level and application-level simulation. For the application
level, we evaluated ApproxLP efficiency/accuracy on a wide range
of practical GPU applications including multimedia, Deep Neural
Networks (DNN’s), and brain-inspired Hyperdimensional comput-
ing [36]. Table 2 shows the number of features, number of classes
and the baseline DNN and HD computing accuracy for each appli-
cation. For neural network, each application contains a network
with two hidden layers with 512 and 256 neurons respectively. In
HD computing, the hypervector are in D = 10, 000 dimensions.

5.3 ApproxLP & Multimedia Applications

For general GPU applications, we used image data and Peak Sig-
nal to Noise Ratio (PSNR) as a metric to check the quality of the
computation. Similarly to prior work, we considered computations
with higher that 30dB PSNR as visually acceptable quality [11, 23].
Table 3 lists the PSNR of different applications running on enhanced
GPU with ApproxLP at different configurations. Our evaluations
show that the PSNR value for all applications increases as more
levels of approximation are included. For example, Sobel application
provides 24.8dB PSNR at Level 1, while the quality of computation
increases to 31.60dB at Level 2.

Table 3 also lists the energy efficiency and Energy-Delay Product
(EDP) improvement as compared to baseline GPU. EDP improve-
ment for each application is found at the level of approximation
which satisfies a 30dB PSNR threshold. Our evaluation shows that
ApproxLP can provide on average 2.14x and 2.39X energy efficiency
and EDP improvements while ensuring acceptable quality loss.



Table 3: The quality of computation, energy and EDP im-
provement of ApproxLP running different applications.

PSNR (dB) Energy EDP

Applications | Level 1 Level 2 Level 3 | Improv. | Improv.
Sobel 24.85 31.60 37.03 2.17x 2.41X
Prewitt 26.63 37.08 37.08 2.08%X 2.26X
Robert 31.78 39.58 56.42 2.43% 2.77X
GaussBlur 29.34 39.50 47.21 2.27X 2.53%X
JPEG 37.70 45.06 50.80 1.85% 2.23X
FFT 34.50 52.51 53.45 2.04x 2.12X

Level 1 Level 2 Level 3

Sobel

JPEG

PSNR: 45.06 dB PSNR: 50.80 dB

FFT

Figure 6: Quality of coniputdtion of"différ
using ApproxLP at different approximation levels.

Table 4: Quality loss of DNN and HD computing applications
running at different levels of ApproxLP.

ent "APppliations

Applications DNN HD Computing
Level 1 Level2 Level3 | Level 1 Level2 Level 3
ISOLET 0.83% 0.31% 0.06% 2.28% 0.86% 0.10%
UCIHAR 1.35% 0.62% 0% 0.94% 0.19% 0.03%
PAMAP 0.80% 0.21% 0% 0.48% 0.26% 0%
FACE 2.07% 0.94% 0.09% 1.32% 0.44% 0.07%

Figure 6 shows an example of computation quality using Sobel,
JPEG compression, and FFT applications running on ApproxLP with
different configurations. A visual inspection of the images reveals
a very small difference between the exact image and the images
produced by each of the three different ApproxLP levels. However,
the corresponding PSNR values reveal significant improvement in
quality when more levels are included while running ApproxLP.

5.4 ApproxLP & Machine Learning
Applications

We also compared the accuracy of ApproxLP on neural network
and hyperdimensional computing applications. Table 4 shows the
impact of ApproxLP configuration on the classification accuracy
of DNN and HD computing algorithms. Our evaluation shows that
ApproxLP at Level 1 provides low quality losses for both DNN and
HD computing applications. For example, DNN and HD on average
have 1.06% and 0.98% lower classification accuracy as compared to
the exact hardware. Quality loss decreases when using ApproxLP
at Level 2 and Level 3 configurations. For example, at Level 2, DNN
and HD computing applications lose on average 0.36% and 0.33%
accuracy respectively. However, using ApproxLP at Level 3 config-
uration, both DNN and HD computing applications provide very
similar classification accuracy as the baseline algorithm running
on exact hardware, with less than 0.04% average quality loss.
Figure 7 shows the impact of ApproxLP configuration on the
EDP of DNN and HD computation algorithms. Our evaluations on
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Figure 7: Energy efficiency and speedup of enhanced GPU
running DNN and HD computing applications.

Table 5: Maximum error of ApproxLP versus Truncated Mul-
tiplication using equivalent number of operations.

# Operations Truncated Mult ApproxLP
4 23.44% 12.5%
8 6.152% 4.167%
12 1.556% 1.25%
14 0.78% 0.347 %

four DNN (HD computing) applications show that ApproxLP at
Level 1 can provide 1.83% and 1.47X (2.39X and 1.76X) improvement
of energy efficiency and speedup as compared to the baseline GPU,
with an average of 1% quality loss. ApproxLP in more accurate
configurations results in an average of 0.5% (maximum 1%) quality
loss, while still providing 1.53X and 1.30% (2.18% and 1.49X) higher
energy efficiency and faster computation when running DNN (HD
computing) applications.

5.5 ApproxLP vs Prior Work

We compared ApproxLP with truncated multiplication. If N is the
length of the truncated mantissas, multiplying two truncated man-
tissas using the conventional shift and add method requires 2N
operations — N adds and N shifts. Given the same maximum er-
ror, ApproxLP requires less arithmetic operations than truncated
multiplication, or conversely, given the same number of operations,
ApproxLP yields a lower error. This happens because ApproxLP of-
fers custom fit functions utilizing the minimum number of required
operations. Table 5 compares the accuracy of ApproxLP with the
accuracy of truncated multiplication. The number of operations at
each level of ApproxLP varies slightly depending on the inputs, and
the best case is presented in Table 5. Even at worst case, ApproxLP
always offers more accuracy than truncated multiplication.

Table 6 compares the Energy-Delay Product (EDP) improvement
of ApproxLP with two state-of-the-art configurable approximate
multipliers: CFPU [22] and RMAC [23]. All results are produced by
multiplying one million random numbers using different approx-
imate hardware. CFPU and RMAC are hybrid designs which use
both approximate and exact hardware depending on the desired
maximum error value. In contrast, ApproxLP is a stand-alone com-
puting unit with tunable error control. As our results show, RMAC



Table 6: Comparing the EDP improvement of ApproxLP and
other approximate multipliers.

Error Rate | 12.5% 8% 5% 3% 15% 0.5%

CFPU [22] | 1.54x  132x 116X 1.07x 1.03x 1.01x
RMAC [23] | 7.25x 11.07x 2.84x 1.63x 1.29x 1.06X
ApproxLP | 13.69x  9.34x  9.34x 5.81x 581X 2.84X
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Figure 8: Area breakdown of ApproxLP and the state-of-the-
art approximate multipliers.

and ApproxLP provide similar EDP improvement when the desired
error rate is higher than 7%. However, due to the large error rate
of RMAC in approximate mode, it needs to primarily run in exact
mode in order to provide error rates of less than 7%. In contrast, as
we show in Section 3.3, ApproxLP has runtime control of the com-
putation error rate. Therefore, it can provide significantly higher
EDP improvement even at low desired error rates. Our evaluation
shows that ApproxLP can provide at least 4.5x and 2.7x EDP im-
provement compared to other approximate multipliers [22, 23] at
1% and 0.5% precision requirements.

5.6 Area Comparison

Finally, we compare ApproxLP and prior work in terms of area
overhead. Figure 8 shows the area of each floating point unit in
CFPU, RMAC and proposed ApproxLP. Both CFPU and RMAC are
hybrid designs, requiring the inclusion of exact FPU hardware in
addition to extra approximation hardware. Thus, the area of these
FPU’s are greater than that of exact hardware. For example, CFPU
requires 3.4% (261.4 ym?) more area to enable adaptive input se-
lection and tuning. Similarly, RMAC takes 1.7% area overhead on
top of exact FPU to enable tuning. By contrast, we propose Ap-
proxLP as a stand alone approximate FPU. ApproxLP removes the
necessity of using exact hardware, thus eliminating the large ex-
act mantissa multiplier. Our evaluation shows that the ApproxLP
main module requires about 60% less area than exact FPU. The
peripheral circuitry to support different ApproxLP configurations,
including an adder, shifter and comparator, take 101.0,um2, 56.4,um2,
and 169.7um? respectively. Our evaluation shows that in compari-
son with RMAC (CFPU), ApproxLP can achieve 2.3X (2.4x) lower
area.

6 CONCLUSION

ApproxLP is a highly efficient multiplication approximator, built
upon the principle of function linearization. The design features
multiple levels of approximation, offering an increase in accuracy
for the price of an increase in energy cost. ApproxLP provides
EDP improvement as high as 5.3x compared to other state of the
art approximate multipliers, while occupying up to 2.3 less chip
area. ApproxLP completely removes the necessity for a hardware
multiplier, as it only uses comparators, shifters, and adders, ensuring
low energy consumption. ApproxLP also has no upper accuracy

limit, and practical application of ApproxLP is only limited by a
device’s energy constraints.
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